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Simple two- and three-dimensional models have been used to investigate the vibronic states of
molecules exhibiting Jahn-Teller-Effect. According to the topology of the adiabatic potential surface,
two cases have to be distinguished, which may (A) or may not (B) be treated in the Born-Oppenheimer
approximation. In the latter case B strong Jahn-Teller coupling leads to a splitting of an A — E absorp-
tion line into three peaks instead of the usual two ones. This additional splitting originates from
transitions into the first and second metastable level of the upper potential well. However, the vibronic
splitting will often be smeared out by coupling of the Jahn-Teller effect to a distortion of a Jahn-Teller
inactive vibration. The effective spin-orbit splitting of an absorption band with unresolved vibrational
structure is larger than in the case of vanishing Jahn-Teller coupling, contrary to the spin-orbit splitting
of single vibronic levels. An experimental example of this effect is discussed. In Jahn-Teller case B
it may be interpreted as a superposition of the vibronic and the spin-orbit splitting effects.

Mittels einfacher zwei- und dreidimensionaler Modelle wurden die vibronischen Zustdnde von
Molekiilen untersucht, die einen Jahn-Teller-Effekt zeigen. Entsprechend der Topologie der adia-
batischen Potentialfldche sind zwei Fille A und B zu unterscheiden, die im Rahmen der Born-Oppen-
heimer-Niherung behandelt werden konnen bzw. wo dies nicht moglich ist. Im letzteren Falle B
fiilhrt eine sehr starke Jahn-Teller-Kopplung zur Aufspaltung einer A— E Absorptionslinie in drei
statt wie iiblich in zwei Peaks. Diese zusitzliche Aufspaltung riihrt her von Ubergiingen in die ersten
beiden metastabilen Resonanzzustidnde der oberen Potentialmulde. In vielen Fallen wird mit einer
Jahn-Teller-Kopplung der asymmetrischen Schwingung cine Verschiebung der Gleichgewichtslage
einer Jahn-Teller inaktiven Schwingung einherlaufen: Die vibronischen Aufspaltungen sollten daher
durch Schwingungsverbreiterung teilweise verschmiert sein. Wihrend die Spin-Bahn-Aufspaltung
einzelner vibronischer Niveaus durch Jahn-Teller-Kopplung verringert wird, wird die effektive
Spin-Bahn-Aufspaltung einer Absorptionslinie mit nichtaufgeldster Schwingungsstruktur vergroBert.
Ein experimentelles Beispiel fiir diesen Effekt wird diskutiert. Im Jahn-Teller-Fall B kann er als Uber-
lagerung der vibronischen und der Spin-Bahn-Aufspaltung interpretiert werden.

1. Introduction

Let us consider a molecule with a degenerate electronic state in the Born-
Oppenheimer approximation. Under a symmetry-breaking distortion, the
degenerate electronic state will usually split. According to Jahn and Teller [1-3]
there exists at least one nontotally symmetric vibrational coordinate, x, for a
non-linear molecule M, where the splitting is linear in x. If M is stable against
dissociation, the corresponding adiabatic potential curves may be approximated by

V(x)=k/2(x + Ry)? .

Now let us consider a second symmetry coordinate y, one which will result
in vibrational bands of appreciable intensity. We have to distinguish between
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Fig. 1. Potential energy as a function of two symmetry coordinates. Case A: x is Jahn-Teller active,

y inactive (two intersecting paraboloids). Case B: both x and y are Jahn-Teller active (only one surface,

the Jahn-Teller cone). Dotted lines: an additional spin-orbit coupling leads to two separate adiabatic
potential surfaces in both cases

Table 1. Classification of Jahn-Teller effect

Non-linear Degenerate Jahn-Teller Relevant Topology of the
symmetries electronic active symmetry corresponding
with degenerate state symmetry coordinates adiabatic potential
representations coordinates energy surface
Tetragonal E by, b, one b, one q, A

b, and b, B
Trigonal, E e e B
pentagonal,
hexagonal
Cubic E e e B

T et e A
t B

two possibilities: A) the y-coordinate is Jahn-Teller inactive or B) it is active.
These cases A and B differ by the topology of the potential surface as is shown in
Fig. 1. Examples of the two cases are given in Table 1. E.g. case A is approximately
realized by a doubly degenerate electronic state of a tetragonal molecule, if only
vibrations of species a, and b, are of relevance for the phenomenon to be discussed,
i.e. the optical absorption spectrum. The main difference between the two cases
is, that the adiabatic surfaces A may be considered as diabatic surfaces, too,
whereas this is not possible with the adiabatic surface B. Correspondingly the
nuclear motion in case A may be calculated within the Born-Oppenheimer
approximation, whereas in case B one has to use at least the diabatic two-state
approximation [4], as has been done in the classical works of Longuet-Higgins
et al. and Ballhausen [5].
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2. Calculational Model

In this way we have calculated vibronic energy levels and wave functions.
Some details are given in Appendix A, see also Ref. [6]. The following simple
adiabatic potential surfaces have been used:

Case A: the two surfaces V| and ¥V, depend on a one-fold degenerate J.T.
active coordinate x and an inactive coordinate, which is now denoted by z, with
harmonic force constants k and k,, respectively:

k k,
Vi,2(x,2) = 7(x T Ro) + “i‘(z —Z,).

Case B: the two branches V, and V_ depend on two J. T. active coordinates x
and y. In order to investigate the effect of an J. T. inactive mode in this case,
too, we introduce a third coordinate z. However, for simplification we assume
X, y to be degenerate (J. T. active e mode);

k k
Vi(x’ys Z)= _(I/ X2+y2iR0)2+ _Z(Z_ZO)Z'
2 2

Case A and this special case B may be looked at as limiting cases of a general
case B with k,#k, and R, # R,: then case A means R, = R,, R,=0 and case B
k.,=k, R.=R,.

The Jahn-Teller energy e, the difference between the potential minimum and
the energy of the symmetric configuration (see Fig. 1), is given in both cases by

Furthermore, we want to investigate the influence of an additional spin-orbit
interaction in an eletronic doublet state. The corresponding matrix element
between the two adiabatic electronic states v, w_ constituing the 2E may be
approximated by

Y3

s Hyl p-y =15

Then the adiabatic potential energies are

k 2 2 2‘ /12 kz 2
Ui(x,z)zi(x + Rp) £ |/ (kRox) +T+7(Z_Zo)

for case A, and

k FE k
Us(x,y,2) = (r* + Ro)* £ l/ kRor)* + =~ + ==z = Z,)

for case B, where we have introduced r? = x? + y2.
In both cases, these are two separate non-intersecting surfaces (see Fig. 1).
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3. Line Shapes of Electronic A— E Transitions for Case B

In this paragraph we will discuss the line shape of an >4 —2E absorption
spectrum at low temperatures. In this case the initial state is the lowest vibrational
state of the electronic state A with an assumed potential curve

4 k.
VA(x5 Vs Z)= ‘2-(.7(:2 +y2)+ TZZZ .

Usually the force constants of the initial and the final state will be somewhat
different. However, as we need the lowest vibrational function only for the calcula-
tion of Franck-Condon factors, the results will not change significantly, if we
use k'=k, and k, =k, instead, for computational reasons. The line shapes are
calculated with an inherent line width of 2w, for each vibronic component
(o =1/ k/M, M = reduced mass), so that the vibrational structure of the spectrum
is smeared out.

Vibronic Splittings

At first we discuss the case 1 =Z,=0. Results for several values of the Jahn-
Teller parameter ¢ are displayed in Fig. 2. We see, that the band shapes exhibit
a more and more pronounced splitting, as the Jahn-Teller coupling increases.
The two main peaks of this well known vibronic splitting of the absorption
bands, may be interpreted as originating from transitions into the lower and upper

1 A
£=0 £=16 wo H
-0 0 10 10 0 10
y A
E=64wo
Eéw./\
10 0 10 20 -0 0 10 20 30

Fig. 2. Line shape of an electronic A — E transition at 0° K, calculated from E x e vibronic states.
Natural line width =2 g, Jahn-Teller energy ¢ =0, 4, 16 and 64 w,. (For ¢ =16 w, single vibronic
transition intensities are shown, t00.)
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Fig. 3. A—~E transitions in the configuration-coordinate model.

adiabatic potential curves,

——— effective potential including the pseudocentrifugal term ~- —— vibronic levels, === re-

4 Mr
sonances in the inner potential well

well of the potential surface (see Fig. 3). A simple semiclassical model [2, 9]
predicts two bands of equal shape centered at E =0 and yields

AE =)/ 4ew,

for the distance of the two maxima. Augmenting the adiabatic potential surface
by a pseudocentrifugal term [2, 9] (see Fig. 3), the refined semiclassical model
even yields the shift of the two bands to higher energies and a smaller width of
the upper peak (see Fig. 2).

Furthermore we see from.Fig. 2 that an increasing Jahn-Teller coupling
leads to a further splitting of the absorption line shape. A third peak is fully
developed at & = 64 «w,, on the right side of which we see an additional shoulder.
Although neither the simple nor the refined semiclassical model is able to explain
this phenomenon, we are nevertheless convinced that it is not merely an artifact
of our calculational procedure: the basis sets of the numerical quantummechanical
calculations have been expanded until the line shape did not change any more.
Furthermore the results are reproducible with double precision arithmetic.

In order to investigate this new phenomenon, we will at first analyse the
wave functions of the vibronic states. In the approximation used [5, 6] the vibronic
wave functions are usually written as

V=90 210 O) +92(8)- 120, §)

where y,, i, are the two degenerate diabatic electronic wave functions depending
on the electronic coordinates ¢ only, and x,, x, are the nuclear wave functions



272 P. Habitz and W. H. E. Schwarz:

50% 50%

L25%

0%

T 0%
0 20 40 60n
(EXnw,)
Fig. 4. Integrated density of vibronic E x e states associated with the upper part of the adiabatic

potential surface versus vibronic main quantum number n (¢ =32 @y, A=0, m=0), —— quantum
mechanical result, - - - - classical approximation. —— absorption line shape of an A— E transition

depending on r=]/x*+y*> and ¢p=arctgy/x. ¥ may be transformed into®
P =em Dy (& 0)-ys () +iy (E 0)-x- ()]

where y_,p_ are the adiabatic electronic wave functions corresponding to the
upper and lower part of the adiabatic energy surface, and where the y’s and y’s
are real. From the normalization integral

T=CPIPD =< w) plaer H<w-lw_ ) g-lx-> =8+ +5_.

one may calculate the percentages of the vibronic states, S, and § .., associated
with the upper and lower parts of the surface, respectively. The integrals needed
are given in appendix A.

The result for & = 32 w, is shown in Fig. 4.

For energy values below ¢, the system is nearly entirely on the lower part
of the surface, for E> ¢:S, —}. This behaviour is to be expected from the clas-
sical model: the maximum probability is near the turning points, which are given

‘ [ E . .
by r,=R0-< - + 1). If we approximate S,/S_ by the ratio of lengths of the

lines of turning points in the x-y-plane, we obtain

0 for E<ce

S:=191
v 7(1—1/%)‘f0r E>¢

which is plotted, too, in Fig. 4. (Refined classical models — e.g. using 1/p. with
p:=}/2M(E—U,) for the probability distribution function — do not lead to
better quantitative agreement with the quantum mechanical result.)

! Only states with m =0 may be reached by optical transitions from the vibrational groundstate
of A[5].
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However, contrary to the classical model, the quantum mechanical model
shows pronounced oscillations of S for E > &. According to the Franck-Condon
principle these should also show up in the line shape and explain the appearance
of a third peak for large ¢ values. In Fig. 2, ¢ =64 w,, and Fig. 4 (¢=32 w), we
can even observe a further shoulder on the high energy side of the spectrum.

The maxima in the S, -curve should correspond to metastable resonances
in the upper potential well (see Fig. 3). As the well is very narrow (for &> @)
and extremely anharmonic, we expect that the energy spacings between the
lowest levels are much larger than o, and decrease with increasing quantum
number. Furthermore, as the lowest states have their density maxima near the
origin, they will lead to large Franck-Condon factors. Therefore, one might
expect, that on the tail of the main progression (beginning at E = @,, with rather
harmonic spacings w, and intensity maximum somewhat below E =¢) there is
superimposed a second anharmonic progression with large spacings, with the
first and most intense line somewhat above E =¢.

However, as the lowest states of the upper potential well are located near
the branching point of the potential surface, they will show a large probability of
changing over to the lower potential well. In other words, those states of the
upper well, which give rise to strong transitions, will most strongly interact
with the quasicontinuum of the broad lower well. Therefore we obtain only
one single progression as shown for s = 16 w, in Fig. 2. This corresponds to the
fact, that even for the second and third maximum, the probability of the final
state to be on the inner part of the potential surface, is much smaller than 50%
as is shown in Fig. 4.

Nevertheless, as the higher maxima in the absorption band are associated
with the resonances in the upper well, their energy values E, should be calculable
from the quasiclassical quantisation rule:

re(Ep)

[ V2M(E,—(1+7/R)P)dr=nn, n=1,273.. )
0

Here we have omitted the pseudocentrifugal term of the potential in order to
solve the integral in closed form, but have retained the restriction of the integration
variable to positive values. Eq. (2) has been solved approximately in Appendix B.
From there we obtain

AE~ 1.65%/cr?

for the energy gap between the first two resonance states, which compares favour-
ably well with the quantum mechanically calculated splitting between the second
and third peaks of the spectra. The energy distance to the next maximum is
somewhat smaller (see Fig. 4) and comes out to be AE = 1.39 %ﬁ.

From this discussion it is evident, that the additional vibronic splitting of
the band shape is not an artifact of our simple model potential and should show
up, too, in the case of more realistic ones, including higher order terms in the
J. T. coupling, spin-orbit interaction and unharmonicity of the zero-order energy.
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Effective Spin-Orbit Splitting

We now investigate the case where the spin-orbit coupling constant no longer
vanishes. As is well known [7] and is evident from the adiabatic energy surfaces
(see Fig. 1) the Jahn-Teller effect is suppressed by strong spin-orbit interaction.
Similarly, a strong Jahn-Teller coupling quenches the spin-orbit coupling. The
physical importance of this phenomenon was established by Ham [8] and is
since then called the Ham-effect. The Ham-effect shows up e.g. in the reduced
spin-orbit splitting of vibronic levels, if the Jahn-Teller coupling is switched
on; this may be seen in a recent calculation of one of the authors (Figs. 3, 4 of

-0 [ Q 10 We

E"'llwo

E=16w.

-10
Fig. 5. Line shape of an electronic 24 — 2E transition at 0° K, calculated from E x e vibronic states.

Natural line width =2 w,, Jahn-Teller energy ¢=0, 4, 16 wy; spin-orbit splitting A =10 &, The
broken curves correspond to the intensities of the two spin-components
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Ref. [6]). Contrary to this, we see from Fig. 5 that the effective spin-orbit splitting
of a non-resolved vibrational band system becomes larger, if an additional Jahn-
Teller coupling increases (see, too, Fig. 4 of Ref. [6]).

We have applied the simple semiclassical model to the case of nonvanishing
spin-orbit coupling. One rather easily obtains for the peak distance

AE 5150 =Max{4; |/ 4ew,}

This obviously does not correspond to our quantum-mechanical result (Fig. 5),
which can phenomenologically be described rather well by the equation

AEvib+so= I/ 48(1)0+),2 (1)

This corresponds to a superposition of both the vibronic and spin-orbit splitting
as two independent effects.

We also used the refined semiclassical model. However, it seems not to be
possible to get a closed formula for the splitting, and the equations must be
solved numerically. The results are in good agreement with the quantum-mechani-
cal result as well as with the empirical Eq. (1).

Jahn-Teller Coupling and Vibrational Broadening

Finally we consider the case Z,#0. We give a preliminary remark about
the order of magnitude of Z,: Let us describe the potential energy by some
Valence Force Field model. In many cases, the J. T. active vibration is of the
streching type or at least includes a marked bond stretching. Now, if the bond
stretching parameters (i.e. bond lengths and valence force constants) will change
upon electronic excitation to the degencrate E state, the parameters of all the
stretching normal vibrations, including the a,,, mode, will change simultaneously.

A=0 A=10 wo
E=4 We \ /\
T - E
-10 10 Wo
o \ /\
. : E
20 -10 0 20 Wo

Fig. 6. Line shape of an electronic 2A—> 2E transition at 0° K; E x ¢ Jahn-Teller coupling (Jahn-Teller
energy =4, 16 w,) and a corresponding vibrational broadening by an a-mode; natural line width 2 @,:
spin-orbit splitting 0 and 10 w,. Compare Fig. 2
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(A special example is discussed in Chapter 5.) Therefore, the vibronic structure
in the absorption line shape, caused by a strong dynamical J. T. effect in the
upper state, will usually be smoothed by strong vibrational broadening due to
the a,, mode. As the additional splitting of the absorption line is much weaker
than the main vibronic splitting we expect that the former one will usually be
suppressed. Furthermore, at nonzero temperature hot bands will contribute,
too, in this direction.

Line shapes for the case, where k =k, and R,=Z,, are plotted in Fig. 6.
Even the main vibronic splitting is smeared out, and we only obtain an asymmetric
band with a shoulder on the high-energy side. Such line-shapes are experimentally
realized e.g. in the spectra of many Ti®* L.-complexes [10], whereas in other
cases (sce e.g. Refs. [11]) line shapes are obtained which are intermediate between
those of Figs. 2 and 6. No experimental spectra are known to us which are identical
with those calculated without allowance for vibrational broadening by an a
mode. Especially the only experimental hint for a third peak is supposed to be
an artifact [11a]. Finally we remark that irrespective of an additional vibrational
broadening the line-shape remains asymmetric and the effective splitting (that
is the peak distance of two gaussians, into which the spectrum may be decomposed)
is empirically given by the relation (1).

4. Line Shapes of Electronic A — E Transitions for Jahn-Teller Coupling Case A

In Fig. 7 we have drawn absorption line shapes of electronic A — E transitions
with Jahn-Teller case A vibronic coupling. In the case of zero spin-orbit interaction
we only observe vibrational broadening of the bands, but no asymmetry and no
vibronic splitting as in case B.

As mentioned before, the adiabatic potential surfaces for case A and B are
topologically equivalent, if we take a spin-orbit coupling into account. Therefore
we except some similarity of case B band shapes and case A band shapes if 1#0.
And indeed, as is seen on the left side of Fig. 7, both phenomena are exhibited
by the calculated 24 —?E band shapes: a) the additional vibronic structure
and b) the enhancement of the effective spin-orbit splitting by vibronic coupling,
However, these vibronic effects only show up if there is strong spin-orbit interac-
tion. And they are rather strongly suppressed by an additional a,, vibrational
broadening (see rhs. of Fig. 7). If R, and Z, are of comparable magnitude any
asymmetry is no longer observable.

As for case B, the simple semiclassical model is not capable of reproducing
the quantum mechanically calculated vibronic effects even qualitatively. On
the other hand the refined semiclassical model predicts band shapes in rough
agreement with Fig. 7. But we did not succeed in obtaining closed formulae for
the splitting. Therefore we only give an empirical formula, which is fitted to the
quantum mechanical results and reproduces them within 0.1 w, for parameter
values in the range of 1 <20 @, and & < 64 w,:

AEq s =2+ 0y /20 162
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Fig. 7. Line shape of an electronic 24— 2E transition at 0° K. E x b Jahn-Teller coupling case A.

Broken curves without, full curves with an additional vibrational broadening (Z, = R,). Jahn-Teller

energy ¢=0, 16, 64 wy; spin-orbit splitting 1 =0, 10 wy; natural line width 2 @, The dotted curves
correspond to the two spin-components of the transition

5. An Experimental Example

The presented investigation has been induced by difficulties in the inter-
pretation of the main absorption lines in the XUV-spectrum of XeF, in the
200 A region [13], which correspond to excitations of a xenon 4dsy, or 4dsp,
electron into the lowest empty molecular orbital. XeF, has D, symmetry (see
Fig. 8) and its LEMO is of ¢, type. It may be approximated by xenon 5 p, , — AO’s,
which are occupied in xenon itself but are nearly empty in the molecule because of
the strong electronegativity of the fluorine ligands [14].

The spin-orbit splitting of the 44 level has been estimated to be 1.95+0.01 eV
and that of the ¢, level to be about 0.6 —0.7¢V [13]. The possible four one-
¢lectron transitions are shown in Fig. 9. They are split and shifted by a) the field
of the F°~ ligands and b) the 4d hole-e, electron interaction, The corresponding
parameters have been estimated from results of a molecular SCF calculation [14].
The main transition energies and intensities then calculated are given in Table 2.

From this Table we see two deviations of the calculated from the measured
values: 1) the splittings between peaks 1 and 2 and between peaks 3 and 4 are
about 0.15 eV larger than calculated on the basis of an e, spin-orbit splitting of
0.7¢eV; 2) peak 4 is calculated so weak that it would not at all be observable.
Now the two xenon 5p — AO’s correlate with the 6,-LEMO’s of the F, — F; and
F,—F, entities (see Fig. 8) and, therefore, are strongly antibonding. From our
19  Theoret. chim. Acta {Berl) Vol. 28
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®
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Fig. 8. Planar XF,-molecule with D ,-symmetry

AE
< obev *P T Yik)
5pm %(jz)
62.6 eV 1 2 3] 4
4d %1(j)
- 195 eV
l 4d 3(j)

Fig. 9. One-electron levels engaged in the 60—65 eV excitations of XeF,

Table 2. Xenon 4d —“5p” transitions in XeF,

Peak Relative energy values in eV? Relative intensities referring to a total of 2
Measured  Calculated Measured  Calculated
With J.T.E. Without J. T. E. WithJ.T.E. Without J. T. E.
1 —1.50 —1.52 —1.45 0.35 0.3s 0.33
2 —0.40 —0.36 —045 0.6s 0.63 0.6s
3 0.70 0.70 0.77 0.7 0.82 0.9s
4 1.50 1.49 1.40 0.3 0.17 0.0+

* The energy values refer to the center of gravity.

experience with XeF, [13] we expect an expansion of the corresponding Xe-F
equilibrium distance of about R,=1/3 A leading to D,, symmetry. This should
give rise to a dynamical Jahn-Teller effect in the absorption spectrum.The 4,,
ground state of XeF, shows 7 normal vibrations: three bond stretching ones
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(a1, by, €,), two in-plane bending ones (b, ¢,; the latter one is mixed to only
a small degree with the e, stretching mode [15]) and two out of plane bending
ones (a,,, by,). We expect that in the excited state only the bond lengths but not
the equilibrium bond angles will be changed. Therefore the equilibrium values
of the stretching symmetry coordinates only will change upon excitation. Further-
more, none of the bending modes will correlate with a, under D,, symmetry.
Consequently there will occur no progressions of bending vibrations to any
appreciable extent. This especially holds for the J. T. active b;, mode and means
that our problem is an example of J. T. case A. As the 4d — e, hole-electron inter-
action is rather weak [13], we may treat the excitations within the one-electron
picture, that is the transitions may be looked at as *4,,—2E, (and *E,—’E,)
transitions.

If we restrict ourselves to the internal stretching coordinates x,, x,, X3, X4
(see Fig. 8) and use the Modified Valence Force Field model, which is described
in appendix C, the calculation leads to results which are also given in Table 2.
We see that the theoretical energy splittings and the intensity values of peaks 3
and 4 are significantly improved, if the Jahn-Teller coupling is included. Further-
more the calculation with the parameters as chosen above reproduces the measured
half width’s of the absorption lines of about 0.7 eV [14].

The parameter values are near those of Fig. 7h: Each of the four one-electron
transitions in XeF, roughly corresponds to one of the broken curves of Fig. 7h.
They show the enhancement of the effective spin-orbit splitting by J. T. coupling
and account for the energy difference of 0.15 — 0.2 ¢V mentioned at the beginning
of this chapter. According to the mixing of pure spin-orbit states by the J. T.
coupling, the broken curves exhibit a second shoulder which considerably
contribute to the intensity of the two weak peaks 1 and 4.

6. Appendix
A. Calculational Details

All the quantum mechanical calculations have been performed numerically
on an IBM 370 computer in a basis set of two- or three-dimensional harmonic
oscillator functions. Most of the occuring integrals over generalized Laguerre
polynomials L}(x) may be found in Refs. [5, 16]. Furthermore for the calculation
of §, -values (see chapter 3) one needs the integrals

r _r_z

1 _r
2 e 2. L0 (r)xrdr
2

e 2 LS (r)x

S,=f{—— -
g i p—1), 2= v/
2 /) 27 2

with ¢ odd and v even. For these quantities, we obtained

r—1 v—2

n pEyEL s 215 2705
O I s N
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-2
. The products over ¢ are to

v
d
and —

with s the smaller of the two integers s

be set equal to unity, if their upper limit is zero.
For the calculation of the intensities we need the following integrals over the
ususal harmonic oscillator functions ¢,(z):

+ "

I 00(@)-0a(z+Zo)-dz= |/ e

k
with = ﬁ Z3. This result is obtained using the relation

z

I

I—n
(ol gy =1 Vlh o2 ® "

zero otherwise .

if I — n even and non-negative

B. Quasiclassical Energy Levels

Solving the integral of Eq. (2), one obtains after substitution by
arcsin x=% — arcsin |/1 — x*

nna)0=E,,<arcsinl/1— ; — |/ ; (1— ;))

] | E
We are interested in the E,-values for small n, for which 6= 8" —1<1.

In terms of 9, the equation reads

2

TH Mg
1+62

2
=(1+ §%)-arc sin —5z?53—-12?55+0(57).

If we retain only the first term of the power series, which is justified in the case
of small §, that is small n and large ¢, the equation can be solved approximately

for the E,
2/3
E,,=s[1+(37m &) }
2 &

C. Bond stretching MVFF for XeF,

x;(i=1,2,3,4) are the internal stretching coordinates of XeF, as indicated
in Fig. 8. The potential energy of the 4,, ground state of XeF, is then written as

k 4 4
(A1) = > Y xi+ Z XX 1+ X2+ X4 3)

i=1 i=1
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In terms of symmetry coordinates,

al =%(X1 + xZ + X3 + X4)
ﬁZg = %(x1 — Xy + X3 — Xy) (3)
€u1 =%(x —X3) & :%(xz —X4),

this reads as

k+2k , ko, k

-k
V(Alg)= —2‘“1g+ 7ﬁ29+ T(?«%x +3;242)

leading to the following normal frequencies
w(ay,)=/(k+2k)/ My
w(byy) = % k/ M

o(e,)=1/(k—k) (1 —2Mp/Mx.)/Mg .

M and My, are the masses of the atoms F and Xe, respectively. With the force
d k

constants k=3.12 o Ayn and k'= 20 the measured values [15] can be re-

produced nearly exactly. We now approximate the potentials of the excited E,

state by

ViE)= &

5 x?+x3]+ =

I; k/ 4

3 [(x, R0)2+(x4— 1+ D) Z Xi(X; 11t X4 2+ X13)
i=1

' 4

k k k
VoE,)=—=[x3 +x31+ = [(x; —Ro)* +(x3—Ro)*1+ Z XX 41+ X2+ X4 3)
2 2 2 5

where we have assumed, that the small coupling force constant k' as well as the
force constant k of the Xe-F bonds, not directly engaged with the excited electron,
have not changed. Transformation to the coordinates given by Egs. (3) yields
(despite a constant term)

k, k k—K k—k
Vl,Z(Eu) = 7(“1g_Qa)+ TB(ﬂzg—T— Qﬂ)iA'alg'ﬁ2g+ T&fl,z + —‘5‘*852 1
with ~ _
AL kf=k;k
and - -
k k
Q= k, Ry, o k_ﬂRO

From our model, which will be correct to first order, we see, that only the a,,
and b,, vibrational modes are strongly influenced by the electronic excitation,
whereas the e, mode is only slightly split (into b,, and b;, of D,,) by different
force constants but does not exhibit a change in the equilibrium value.

We have calculated the absorptlon line shape from E, x a;, x b,, vibronic
states using the parameters as given above and k=08 k. The final shape is not
very sensitive to this latter choice.
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